Article Cited by others

ORIGINAL ARTICLE

Prostate cancer prediction using the random forest algorithm that takes into account transrectal ultrasound findings, age, and serum levels of prostate-specific antigen

Xiao Li-Hong, Chen Pei-Ran, Gou Zhong-Ping, Li Yong-Zhong, Li Mei, Xiang Liang-Cheng, Feng Ping

Year : 2017| Volume: 19| Issue : 5 | Page no: 586-590

   This article has been cited by
 
1 Prediction of Atrial Fibrillation in Hospitalized Elderly Patients With Coronary Heart Disease and Type 2 Diabetes Mellitus Using Machine Learning: A Multicenter Retrospective Study
Qian Xu, Yan Peng, Juntao Tan, Wenlong Zhao, Meijie Yang, Jie Tian
Frontiers in Public Health. 2022; 10
[Pubmed]  [Google Scholar] [DOI]
2 The Role of Artificial Intelligence in Early Cancer Diagnosis
Benjamin Hunter, Sumeet Hindocha, Richard W. Lee
Cancers. 2022; 14(6): 1524
[Pubmed]  [Google Scholar] [DOI]
3 Prediction of Incident Cancers in the Lifelines Population-Based Cohort
Francisco O. Cortés-Ibańez,Sunil Belur Nagaraj,Ludo Cornelissen,Gerjan J. Navis,Bert van der Vegt,Grigory Sidorenkov,Geertruida H. de Bock
Cancers. 2021; 13(9): 2133
[Pubmed]  [Google Scholar] [DOI]
4 Improved predictive performance of prostate biopsy collaborative group risk calculator when based on automated machine learning
Miroslav Stojadinovic,Bogdan Milicevic,Slobodan Jankovic
Computers in Biology and Medicine. 2021; 138: 104903
[Pubmed]  [Google Scholar] [DOI]
5 Dr. Answer AI for Prostate Cancer: Predicting Biochemical Recurrence Following Radical Prostatectomy
Jihwan Park, Mi Jung Rho, Hyong Woo Moon, Jaewon Kim, Chanjung Lee, Dongbum Kim, Choung-Soo Kim, Seong Soo Jeon, Minyong Kang, Ji Youl Lee
Technology in Cancer Research & Treatment. 2021; 20: 1533033821
[Pubmed]  [Google Scholar] [DOI]
6 Identifying discriminative features for diagnosis of Kashin-Beck disease among adolescents
Yanan Zhang,Xiaoli Wei,Chunxia Cao,Fangfang Yu,Wenrong Li,Guanghui Zhao,Haiyan Wei,Feng’e Zhang,Peilin Meng,Shiquan Sun,Mikko Juhani Lammi,Xiong Guo
BMC Musculoskeletal Disorders. 2021; 22(1)
[Pubmed]  [Google Scholar] [DOI]
7 Radiomic and Genomic Machine Learning Method Performance for Prostate Cancer Diagnosis: Systematic Literature Review
Rossana Castaldo,Carlo Cavaliere,Andrea Soricelli,Marco Salvatore,Leandro Pecchia,Monica Franzese
Journal of Medical Internet Research. 2021; 23(4): e22394
[Pubmed]  [Google Scholar] [DOI]
8 Makine Ögrenmesi Algoritmalari Kullanilarak Prostat Kanseri Tümör Olusumunun Incelenmesi
Nesrin AYDIN ATASOY, Ahmet DEMIRÖZ
European Journal of Science and Technology. 2021;
[Pubmed]  [Google Scholar] [DOI]
9 Optimization of parallel random forest algorithm based on distance weight
Qinge Wang,Huihua Chen
Journal of Intelligent & Fuzzy Systems. 2020; : 1
[Pubmed]  [Google Scholar] [DOI]
10 Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia
Herdiantri Sufriyana,Yu-Wei Wu,Emily Chia-Yu Su
EBioMedicine. 2020; 54: 102710
[Pubmed]  [Google Scholar] [DOI]
11 Improving Prostate Cancer (PCa) Classification Performance by Using Three-Player Minimax Game to Reduce Data Source Heterogeneity
Yanan Shao,Jane Wang,Brian Wodlinger,Septimiu E. Salcudean
IEEE Transactions on Medical Imaging. 2020; 39(10): 3148
[Pubmed]  [Google Scholar] [DOI]
12 Machine learning methods (MLMs) can more efficiently predict prostate cancer compared with PSA density and PSA velocity
Satoshi Nitta,Masakazu Tsutsumi,Shotaro Sakka,Tsuyoshi Endo,Kenichiro Hashimoto,Morikuni Hasegawa,Takayuki Hayashi,Koji Kawai,Hiroyuki Nishiyama
Prostate International. 2019;
[Pubmed]  [Google Scholar] [DOI]
13 Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection
Yuyan Wang,Dujuan Wang,Na Geng,Yanzhang Wang,Yunqiang Yin,Yaochu Jin
Applied Soft Computing. 2019; 77: 188
[Pubmed]  [Google Scholar] [DOI]
14 Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms
Zenghua Ren,Yudan Hu,Ling Xu
Respiratory Research. 2019; 20(1)
[Pubmed]  [Google Scholar] [DOI]
15 Factors Associated with HIV Testing Among Participants from Substance Use Disorder Treatment Programs in the US: A Machine Learning Approach
Yue Pan,Hongmei Liu,Lisa R. Metsch,Daniel J. Feaster
AIDS and Behavior. 2017; 21(2): 534
[Pubmed]  [Google Scholar] [DOI]

 

Read this article