Article Cited by others

INVITED RESEARCH HIGHLIGHT

Mechanisms of fertilization elucidated by gene-manipulated animals

Okabe Masaru

Year : 2015| Volume: 17| Issue : 4 | Page no: 646-652

   This article has been cited by
 
1 The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices
Nima Ahmadkhani, Mahshid Hosseini, Maryam Saadatmand, Alireza Abbaspourrad
Journal of Assisted Reproduction and Genetics. 2022;
[Pubmed]  [Google Scholar] [DOI]
2 PRSS37 deficiency leads to impaired energy metabolism in testis and sperm revealed by DIA-based quantitative proteomic analysis
Wenfeng Xiong, Haoyang Ge, Chunling Shen, Chaojie Li, Xiaohong Zhang, Lingyun Tang, Yan Shen, Shunyuan Lu, Hongxin Zhang, Zhugang Wang
Reproductive Sciences. 2022;
[Pubmed]  [Google Scholar] [DOI]
3 Sperm-oviduct interactions: Key factors for sperm survival and maintenance of sperm fertilizing capacity
Sabine Kölle
Andrology. 2022;
[Pubmed]  [Google Scholar] [DOI]
4 The Fertilization Enigma: How Sperm and Egg Fuse
Victoria E. Deneke,Andrea Pauli
Annual Review of Cell and Developmental Biology. 2021; 37(1): 391
[Pubmed]  [Google Scholar] [DOI]
5 The cell biology of fertilization: Gamete attachment and fusion
Karen K. Siu,Vitor Hugo B. Serrão,Ahmed Ziyyat,Jeffrey E. Lee
Journal of Cell Biology. 2021; 220(10)
[Pubmed]  [Google Scholar] [DOI]
6 Dissecting the PRSS37 interactome and potential mechanisms leading to ADAM3 loss in PRSS37-null sperm
Wenfeng Xiong,Chunling Shen,Chaojie Li,Xiaohong Zhang,Haoyang Ge,Lingyun Tang,Yan Shen,Shunyuan Lu,Hongxin Zhang,Mi Han,Aijun Zhang,Jinjin Wang,Youbing Wu,Jian Fei,Zhugang Wang
Journal of Cell Science. 2021; 134(10)
[Pubmed]  [Google Scholar] [DOI]
7 The Drosophila Neprilysin 4 gene is essential for sperm function following sperm transfer to females
Takashi Ohsako,Machi Shirakami,Kazuharu Oiwa,Kimihide Ibaraki,Timothy L. Karr,Masatoshi Tomaru,Rikako Sanuki,Toshiyuki Takano-Shimizu-Kouno
Genes & Genetic Systems. 2021;
[Pubmed]  [Google Scholar] [DOI]
8 Genetic diversity in the IZUMO1-JUNO protein-receptor pair involved in human reproduction
Jessica Allingham, Wely B. Floriano, Arnar Palsson
PLOS ONE. 2021; 16(12): e0260692
[Pubmed]  [Google Scholar] [DOI]
9 The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice†
Wenfeng Xiong,Chunling Shen,Zhugang Wang
Biology of Reproduction. 2021;
[Pubmed]  [Google Scholar] [DOI]
10 Acrosin is essential for sperm penetration through the zona pellucida in hamsters
Michiko Hirose,Arata Honda,Helena Fulka,Miwa Tamura-Nakano,Shogo Matoba,Toshiko Tomishima,Keiji Mochida,Ayumi Hasegawa,Kiyoshi Nagashima,Kimiko Inoue,Masato Ohtsuka,Tadashi Baba,Ryuzo Yanagimachi,Atsuo Ogura
Proceedings of the National Academy of Sciences. 2020; : 201917595
[Pubmed]  [Google Scholar] [DOI]
11 Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm-oocyte fusion in mice
Taichi Noda,Yonggang Lu,Yoshitaka Fujihara,Seiya Oura,Takayuki Koyano,Sumire Kobayashi,Martin M. Matzuk,Masahito Ikawa
Proceedings of the National Academy of Sciences. 2020; : 201922650
[Pubmed]  [Google Scholar] [DOI]
12 Localización de arilsulfatasa A durante la incubación in vitro de espermatozoides humanos en medio de capacitación
Natalia Huerta-Retamal,Paula Sáez-Espinosa,Laura Robles-Gómez,Alejandro Romero,Jon Aizpurua,María José Gómez-Torres
Revista Internacional de Andrología. 2020;
[Pubmed]  [Google Scholar] [DOI]
13 Human sperm chaperone HSPA2 distribution during in vitro capacitation
Natalia Huerta-Retamal,Paula Sáez-Espinosa,Laura Robles-Gómez,Manuel Avilés,Alejandro Romero,Jon Aizpurua,María José Gómez-Torres
Journal of Reproductive Immunology. 2020; : 103246
[Pubmed]  [Google Scholar] [DOI]
14 Quantitative Proteomic Analysis of Seminal Plasma, Sperm Membrane Proteins, and Seminal Extracellular Vesicles Suggests Vesicular Mechanisms Aid in the Removal and Addition of Proteins to the Ram Sperm Membrane
Tamara Leahy,Jessica P Rickard,Taylor Pini,Bart M Gadella,Simon P Graaf
PROTEOMICS. 2020; : 1900289
[Pubmed]  [Google Scholar] [DOI]
15 LYPD4, mouse homolog of a human acrosome protein, is essential for sperm fertilizing ability and male fertility†
Dan Wang,Liping Cheng,Wenjuan Xia,Xiaofei Liu,Yueshuai Guo,Xiaoyu Yang,Xuejiang Guo,Eugene Yujun Xu
Biology of Reproduction. 2020;
[Pubmed]  [Google Scholar] [DOI]
16 Functional redundancy and compensation: Deletion of multiple murine Crisp genes reveals their essential role for male fertility
L. Curci,N. G. Brukman,M. Weigel Muñoz,D. Rojo,G. Carvajal,V. Sulzyk,S. N. Gonzalez,M. Rubinstein,V. G. Da Ros,P. S. Cuasnicú
The FASEB Journal. 2020;
[Pubmed]  [Google Scholar] [DOI]
17 Increase of germ cell nuclear factor expression in globozoospermic Gopc -/- knockout mice
M. Bizkarguenaga,L. Gomez-Santos,J. F. Madrid,F. J. Sáez,E. Alonso
Andrology. 2019;
[Pubmed]  [Google Scholar] [DOI]
18 The female reproductive tract contains multiple innate sialic acid-binding immunoglobulin-like lectins (Siglecs) that facilitate sperm survival
Eillen Tecle,Hector Sequoyah Reynoso,Ruixuan Wang,Pascal Gagneux
Journal of Biological Chemistry. 2019; 294(31): 11910
[Pubmed]  [Google Scholar] [DOI]
19 An update of the regulatory factors of sperm migration from the uterus into the oviduct by genetically manipulated mice
Wenfeng Xiong,Zhugang Wang,Chunling Shen
Molecular Reproduction and Development. 2019;
[Pubmed]  [Google Scholar] [DOI]
20 The fate of spermatozoa in the female reproductive tract: A comparative review
J.P. Rickard,K.R. Pool,X. Druart,S.P. de Graaf
Theriogenology. 2019; 137: 104
[Pubmed]  [Google Scholar] [DOI]
21 Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-Rich Secretory Protein 1 (CRISP1)†
Mariana Weigel Muñoz,María A Battistone,Guillermo Carvajal,Julieta A Maldera,Ludmila Curci,Pablo Torres,Daniel Lombardo,Omar P Pignataro,Vanina G Da Ros,Patricia S Cuasnicú
Biology of Reproduction. 2018;
[Pubmed]  [Google Scholar] [DOI]
22 Beware of memes in the interpretation of your results - lessons from gene-disrupted mice in fertilization research
Masaru Okabe
FEBS Letters. 2018;
[Pubmed]  [Google Scholar] [DOI]
23 Deficiency of fibroblast growth factor 2 (FGF-2) leads to abnormal spermatogenesis and altered sperm physiology
Lucía Saucedo,Regina Rumpel,Cristian Sobarzo,Dietmar Schreiner,Gudrun Brandes,Livia Lustig,Mónica Hebe Vazquez-Levin,Claudia Grothe,Clara Marín-Briggiler
Journal of Cellular Physiology. 2018;
[Pubmed]  [Google Scholar] [DOI]
24 Human sperm acrosomal status, acrosomal responsiveness, and acrosin are predictive of the outcomes of in vitro fertilization: A prospective cohort study
Fang Xu,Hailun Zhu,Wenbing Zhu,Liqing Fan
Reproductive Biology. 2018;
[Pubmed]  [Google Scholar] [DOI]
25 Factors controlling sperm migration through the oviduct revealed by gene-modified mouse models
Yoshitaka Fujihara,Haruhiko Miyata,Masahito Ikawa
Experimental Animals. 2018; 67(2): 91
[Pubmed]  [Google Scholar] [DOI]
26 CatSper? regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility
Jean-Ju Chung,Kiyoshi Miki,Doory Kim,Sang-Hee Shim,Huanan F Shi,Jae Yeon Hwang,Xinjiang Cai,Yusuf Iseri,Xiaowei Zhuang,David E Clapham
eLife. 2017; 6
[Pubmed]  [Google Scholar] [DOI]
27 Exosomes versus microexosomes: Shared components but distinct functions
Kenji Miyado,Woojin Kang,Kenji Yamatoya,Maito Hanai,Akihiro Nakamura,Toshiyuki Mori,Mami Miyado,Natsuko Kawano
Journal of Plant Research. 2017;
[Pubmed]  [Google Scholar] [DOI]
28 Heat Shock Protein member A2 forms a stable complex with angiotensin converting enzyme and protein disulfide isomerase A6 in human spermatozoa
Elizabeth G. Bromfield,Eileen A. McLaughlin,Robert John Aitken,Brett Nixon
Molecular Human Reproduction. 2016; 22(2): 93
[Pubmed]  [Google Scholar] [DOI]
29 Microfluidic devices for the study of sperm migration
S. S. Suarez,M. Wu
Molecular Human Reproduction. 2016;
[Pubmed]  [Google Scholar] [DOI]
30 Behavior of Mouse Spermatozoa in the Female Reproductive Tract from Soon after Mating to the Beginning of Fertilization1
Yuko Muro,Hidetoshi Hasuwa,Ayako Isotani,Haruhiko Miyata,Kazuo Yamagata,Masahito Ikawa,Ryuzo Yanagimachi,Masaru Okabe
Biology of Reproduction. 2016; 94(4)
[Pubmed]  [Google Scholar] [DOI]
31 GPI-AP release in cellular, developmental, and reproductive biology
Yoshitaka Fujihara,Masahito Ikawa
Journal of Lipid Research. 2016; 57(4): 538
[Pubmed]  [Google Scholar] [DOI]
32 Mechanical tuning of mammalian sperm behaviour by hyperactivation, rheology and substrate adhesion: a numerical exploration
Kenta Ishimoto,Eamonn A. Gaffney
Journal of The Royal Society Interface. 2016; 13(124): 20160633
[Pubmed]  [Google Scholar] [DOI]
33 D-penicillamine prevents ram sperm agglutination by reducing the disulphide bonds of a copper-binding sperm protein
T Leahy,JP Rickard,RJ Aitken,SP de Graaf
Reproduction. 2016; 151(5): 491
[Pubmed]  [Google Scholar] [DOI]

 

Read this article